10 resultados para 16s Rdna

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microorganisms play an important role in the transformation of material within the earth's crust. The storage of CO2 could affect the composition of inorganic and organic components in the reservoir, consequently influencing microbial activities. To study the microbial induced processes together with geochemical, petrophysical and mineralogical changes, occurring during CO2 storage, long-term laboratory experiments under simulated reservoir P-T conditions were carried out. Clean inner core sections, obtained from the reservoir region at the CO2 storage site in Ketzin (Germany) from a depth of about 650 m, were incubated in high pressure vessels together with sterile synthetic formation brine under in situ P-T conditions of 5.5 MPa and 40°C. A 16S rDNA based fingerprinting method was used to identify the dominant species in DNA extracts of pristine sandstone samples. Members of the alpha- and beta-subdivisions of Proteobacteria and the Actinobacteria were identified. So far sequences belonging to facultative anaerobic, chemoheterotrophic bacteria (Burkholderia fungorum, Agrobacterium tumefaciens) gaining their energy from the oxidation of organic molecules and a genus also capable of chemolithoautotrophic growth (Hydrogenophaga) was identified. During CO2 incubation minor changes in the microbial community composition were observed. The majority of microbes were able to adapt to the changed conditions. During CO2 exposure increased concentrations of Ca**2+, K**+, Mg**2+ and SO4**2- were observed. Partially, concentration rises are (i) due to equilibration between rock pore water and synthetic brine, and (ii) between rock and brine, and are thus independent on CO2 exposure. However, observed concentrations of Ca**2+, K**+, Mg**2+ are even higher than in the original reservoir fluid and therefore indicate mineral dissolution due to CO2 exposure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Based on our current knowledge about population genetics, phylogeography and speciation, we begin to understand that the deep sea harbours more species than suggested in the past. Deep-sea soft-sediment environment in particular hosts a diverse and highly endemic invertebrate fauna. Very little is known about evolutionary processes that generate this remarkable species richness, the genetic variability and spatial distribution of deep-sea animals. In this study, phylogeographic patterns and the genetic variability among eight populations of the abundant and widespread deep-sea isopod morphospecies Betamorpha fusiformis [Barnard, K.H., 1920. Contributions to the crustacean fauna of South Africa. 6. Further additions to the list of marine isopods. Annals of the South African Museum 17, 319-438] were examined. A fragment of the mitochondrial 16S rRNA gene of 50 specimens and the complete nuclear 18S rRNA gene of 7 specimens were sequenced. The molecular data reveal high levels of genetic variability of both genes between populations, giving evidence for distinct monophyletic groups of haplotypes with average p-distances ranging from 0.0470 to 0.1440 (d-distances: 0.0592-0.2850) of the 16S rDNA, and 18S rDNA p-distances ranging between 0.0032 and 0.0174 (d-distances: 0.0033-0.0195). Intermediate values are absent. Our results show that widely distributed benthic deep-sea organisms of a homogeneous phenotype can be differentiated into genetically highly divergent populations. Sympatry of some genotypes indicates the existence of cryptic speciation. Flocks of closely related but genetically distinct species probably exist in other widespread benthic deep-sea asellotes and other Peracarida. Based on existing data we hypothesize that many widespread morphospecies are complexes of cryptic biological species (patchwork hypothesis).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present data set provides a tab separated text file compressed in a zip archive. The file includes metadata for each TaraOceans V9 rDNA OTU including the following fields: md5sum = identifier of the representative (most abundant) sequence of the swarm; cid = identifier of the OTU; totab = total abundance of barcodes in this OTU; TARA_xxx = number of occurrences of barcodes in this OTU in each of the 334 samples;rtotab = total abundance of the representative barcode; pid = percentage identity of the representative barcode to the closest reference sequence from V9_PR2; lineage = taxonomic path assigned to the representative barcode ; refs = best hit reference sequence(s) with respect to the representative barcode ; taxogroup = high-taxonomic level assignation of the representative barcode. The file also includes three categories of functional annotations: (1) Chloroplast: yes, presence of permanent chloroplast; no, absence of permanent chloroplast ; NA, undetermined. (2) Symbiont (small partner): parasite, the species is a parasite; commensal, the species is a commensal; mutualist, the species is a mutualist symbiont, most often a microalgal taxon involved in photosymbiosis; no the species is not involved in a symbiosis as small partner; NA, undetermined. (3) Symbiont (host): photo, the host species relies on a mutualistic microalgal photosymbiont to survive (obligatory photosymbiosis); photo_falc, same as photo, but facultative relationship; photo_klep, the host species maintains chloroplasts from microalgal prey(s) to survive; photo_klep_falc, same as photo_klep, but facultative; Nfix, the host species must interact with a mutualistic symbiont providing N2 fixation to survive; Nfix_falc, same as Nfix, but facultative; no, the species is not involved in any mutualistic symbioses; NA, undetermined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present data set provides a tab separated text file compressed in a zip archive. The file includes metadata for each TaraOceans V9 rDNA metabarcode including the following fields: md5sum = unique identifier; lineage = taxonomic path associated to the metabarcode; pid = % identity to the closest reference barcode from V9_PR2; sequence = nucleotide sequence of the metabarcode; refs = identity of the best hit reference sequence(s); TARA_xxx = number of occurrences of this barcode in each of the 334 samples; totab = total abundance of the barcode ; cid = identifier of the OTU to which the barcode belongs; and taxogroup = high-taxonomic level assignation of this barcode. The file also includes three categories of functional annotations: (1) Chloroplast: yes, presence of permanent chloroplast; no, absence of permanent chloroplast ; NA, undetermined. (2) Symbiont (small partner): parasite, the species is a parasite; commensal, the species is a commensal; mutualist, the species is a mutualist symbiont, most often a microalgal taxon involved in photosymbiosis; no the species is not involved in a symbiosis as small partner; NA, undetermined. (3) Symbiont (host): photo, the host species relies on a mutualistic microalgal photosymbiont to survive (obligatory photosymbiosis); photo_falc, same as photo, but facultative relationship; photo_klep, the host species maintains chloroplasts from microalgal prey(s) to survive; photo_klep_falc, same as photo_klep, but facultative; Nfix, the host species must interact with a mutualistic symbiont providing N2 fixation to survive; Nfix_falc, same as Nfix, but facultative; no, the species is not involved in any mutualistic symbioses; NA, undetermined. For example, the collodarian/Brandtodinium symbiosis is annotated: Chloroplast, "no"; Symbiont (small), "no"; Symbiont (host), "photo", for the collodarian host; and: Chloroplast, "yes"; Symbiont (small), "mutualist"; Symbiont (host), "no", for the dinoflagellate microalgal endosymbiont.chloroplast = "yes", "no" or "NA"; symbiont.small = "parasite", "commensal", "mutualist", "no" or "NA"; symbiont.host = "photo", "photo_falc", "photo_klep", "Nfix", no or NA; benef = "Nfix", "no" or "NA"; trophism = Metazoa , heterotroph , NA , photosymbiosis , phototroph according to the previous fields.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deep drilling into the marine sea floor has uncovered a vast sedimentary ecosystem of microbial cells (Parkes et al., 1994, doi:10.1038/371410a0; D'Hondt et al., 2004, doi:10.1126/science.1101155). Extrapolation of direct counts of stained microbial cells to the total volume of habitable marine subsurface sediments suggests that between 56 Pg (Parkes et al., 1994, doi:10.1038/371410a0) and 303 Pg (Whitman et al., 1998) of cellular carbon could be stored in this largely unexplored habitat. From recent studies using various culture-independent techniques, no clear picture has yet emerged as to whether Archaea or Bacteria are more abundant in this extensive ecosystem (Schippers et al., doi:10.1038/nature03302; Inagaki et al., doi:10.1073/pnas.0511033103 ; Mauclaire et al., doi:10.1111/j.1472-4677.2004.00035.x; Biddle et al., doi:10.1073/pnas.0600035103). Here we show that in subsurface sediments buried deeper than 1 m in a wide range of oceanographic settings at least 87% of intact polar membrane lipids, biomarkers for the presence of live cells (Biddle et al., doi:10.1073/pnas.0600035103; Sturt et al., 2004, doi:10.1002/rcm.1378), are attributable to archaeal membranes, suggesting that Archaea constitute a major fraction of the biomass. Results obtained from modified quantitative polymerase chain reaction and slot-blot hybridization protocols support the lipid-based evidence and indicate that these techniques have previously underestimated archaeal biomass. The lipid concentrations are proportional to those of total organic carbon. On the basis of this relationship, we derived an independent estimate of amounts of cellular carbon in the global marine subsurface biosphere. Our estimate of 90 Pg of cellular carbon is consistent, within an order of magnitude, with previous estimates, and underscores the importance of marine subsurface habitats for global biomass budgets.